QUEEN'S BIOLOGY MCIB SEMINAR SERIES
  • Home
  • Schedule
  • Contact

Seminar series of the Molecular, Cellular & Integrative Biology
research groups at Queen's University

Tues Feb 2 // Bryden O'Gallagher // Plaxton Lab, Queen's University

1/28/2021

 
Picture

Bryden O'Gallagher
MSc Candidate, Plaxton Lab, Queen's University
Exploring the role of the dual-targeted 'mammalian type' purple acid phosphatase AtPAP17 in Arabidopsis thaliana phosphate and ROS metabolism

Orthophosphate (H2PO4-, Pi) is an essential, but environmentally limiting macronutrient required for many fundamental metabolic processes. Pi starved (–Pi) plants undergo a complex array of morphological and biochemical/molecular adaptations, collectively known as the ‘Pi starvation response’. Purple acid phosphatases (PAPs) play an indispensable role in the PSR by scavenging and recycling Pi from intra- and extracellular Pi-monoesters. The aim of this thesis has been to integrate biochemical and genetic approaches to help assess the role of AtPAP17 (one of 29 predicted Arabidopsis PAPs) in Pi and ROS metabolism. AtPAP17 is unique to previously characterized PAPs as it: i) is transcriptionally induced in response to Pi-starvation, leaf senescence, salinity, drought, as well as immune-related biotic stress, and ii) exists as a low molecular weight (35 kDa) ‘mammalian like’ PAP that exhibits both acid phosphatase and peroxidase activity. I determined the H2O2 peroxidase kinetics of purified AtPAP17, while demonstrating that this PAP is de novo synthesized and dual-targeted to the secretome and intracellular fraction of –Pi, senescing, or salt stressed Arabidopsis, but rapidly turned over following Pi resupply to –Pi plants. Nevertheless, loss of AtPAP17 expression in an atpap17 mutant did not influence the ability of Arabidopsis to acclimate to Pi deprivation, salinity or oxidative stress, or to recycle Pi during leaf senescence. This research field is enabling the development of innovative strategies for engineering Pi-efficient and stress-tolerant crops, urgently needed to reduce inputs of unsustainable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation. 

Comments are closed.

    Archives

    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    June 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    November 2018
    October 2018
    September 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016

Powered by Create your own unique website with customizable templates.
  • Home
  • Schedule
  • Contact