QUEEN'S BIOLOGY MCIB SEMINAR SERIES
  • Home
  • Schedule
  • Contact

Seminar series of the Molecular, Cellular & Integrative Biology
research groups at Queen's University

12:30-1:30 pm - Feb., 7,2018, Using Next Generation Molecular Fungicides to Protect Canada's Crops

1/29/2019

 
Picture
Dr. Mark Belmont, University of Manitoba

This seminar will provide insights into the utility of next generation, RNAi-based molecular fungicides and their applicability to control crop pathogens. Sclerotina sclerotiorum, the causal agent of white mold, infects over 450 species of plants worldwide. This fungal phytopathogen has become a major threat to crops including canola which contributes $27 billion to the Canadian economy. Sclerotinia is a persistent problem for canola growers that has traditionally been managed using broad-spectrum fungicides. However, current fungicide strategies have proven to be ineffective. Thus, there is an immediate need to manage Sclerotinia using novel species-specific control methods. Our strategy exploits the inherent cellular defense process known as RNA interference (RNAi). Upon encountering a double stranded RNA (dsRNA) molecule, the cell processes the dsRNA specifically targeting transcripts with sequence homology. Sclerotinia-specific target genes were identified using bioinformatics. RNAi knockdown was confirmed using qRT-PCR on RNA isolated from fungal cultures. Transgenic plants over-expressing the dsRNA showed a profound and prolonged tolerance to Sclerotinia.  

Jan 24., 2019 // Network Effects on Cell Surface Receptor Function

1/8/2019

 
Picture
Dr. Adam Mott, Dept Biology, Univ Toronto, Scarborough Campus

To thrive, plants must be able to quickly recognize and respond to changing environmental conditions and pathogen attack. The perception of many signals is accomplished through the collective action of members of the leucine-rich repeat receptor kinase (LRR-RK) family, of which there are 225 in Arabidopsis. Upon detection of an extracellular signal, these receptors physically interact to form signaling-competent structures able to integrate complex signals to guide plant defence and growth. Using a high-throughput interaction screen we determined the physical interactions between 200 of the LRR-RLKs from Arabidopsis. Using network analysis and community detection we have detected distinct, but interconnected, subnetworks that show evidence of specialized biological activity and demonstrated novel function for several previous unstudied receptors. In addition, we show that the overall network structure is critical for proper signaling responses, and disruptions can have unexpected consequences at a distance.

    Archives

    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    June 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    November 2018
    October 2018
    September 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016

Powered by Create your own unique website with customizable templates.
  • Home
  • Schedule
  • Contact