QUEEN'S BIOLOGY MCIB SEMINAR SERIES
  • Home
  • Schedule
  • Contact

Seminar series of the Molecular, Cellular & Integrative Biology
research groups at Queen's University

Tues Apr 7 //

4/6/2020

 
Joseph Quagraine
Masters Candidate, Regan Lab
Queen's University

2:00PM
​Zoom 
Anthropogenic activities have led to widespread heavy metal contaminants such cadmium and arsenic. When left untreated, they pose risk to both human and ecosystem health as well as further reduce arable lands. Phytoremediation, which is the use of plants and their associated microorganisms to clean up such contaminants, is environmentally friendly, cost effective and fast-growing trees such as Populus sp. are good candidates for phytoremediation because of their tolerance of heavy metals, high biomass and their distribution across much of the northern hemisphere. However, the molecular mechanisms underlying poplar’s phytoremediation are poorly understood. Although Populus is a model tree species, with a sequenced genome and many genetic and genomic resources, the identification of genes for important tree traits is still slower than in other model plants such as Arabidopsis. This study uses a functional genomics approach to identify genes related to bioremediation by taking advantage of a large collection of activation tagged poplars (Populus tremula x P. alba hybrid 717-1B4) created by Dr. Sharon Regan’s  Lab. After screening over 1700 independent transgenic lines for characteristics that could affect phytoremediation, seven mutants had altered root biomass whereas 15 mutants had altered response to heavy metals. Of the seven root phenotypes identified, two previously studied mutants, called rippled leaf and adventitious root were further investigated. RT-qPCR analysis showed an up-regulation of CYCLIND1;2 and E3 ubiquitin-protein ligase XBAT32/33 in the roots of rippled leaf and adventitious root mutants respectively. The upregulation of CYCLIND1;2 is suspected to increase root biomass through accelerated cell cycle division. XBAT32/33 on the other hand is suspected to promote the production of lateral roots through the regulation of ethylene biosynthesis. Altogether, this study provides a starting point in the quest to discover key genes responsible for phytoremediation and could lead ultimately to the development of biomarkers for selection of superior trees from natural population for clean-up purposes.

    Archives

    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    June 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    November 2018
    October 2018
    September 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    November 2017
    October 2017
    September 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016

Powered by Create your own unique website with customizable templates.
  • Home
  • Schedule
  • Contact